

Алиса Бобовникова
Agile Transformation in IT-organizations

INTRODUCTION
Current market conditions stimulate organizations to introduce

innovative product improvement solutions. Environment changes
responsiveness became an important factor in market competition. This
trend is especially typical for the IT industry as this field is characterized
by a lot of innovation. Transforming companies find it difficult to adapt
to continuous change. This is often caused by lack of organizational
flexibility and changes responsiveness practice. In order to address this
issue, companies need to continuously search, evaluate, analyze and
develop new tools for organizational culture.

This narrative is for those who have chosen the path of
transformation to gain speed, flexibility and effectiveness. We will talk
about how to improve the team’s effectiveness with agile techniques
and also give you an idea how to start changes and how to measure
them.

Chapter 1 discusses the approach to understanding agile
methodology and its main provisions. Special attention is paid to the
relationship between the type of thinking and the team effectiveness.
Continuous customer focus and the need for regular teams’ interaction
is revealed from practical examples.

Chapter 2 reflects agile management features and waterfall approach,
which is also considered classic. This chapter provides these
methodologies comparative analysis, highlighting distinctive features
and opportunities for their use.

Chapter 3 describes agile transformation stages, most common agile
frameworks, their distinctive features as well as their pros & cons.

Chapter 4 provides an overview of the main existing agile
methodologies with implementation examples, as well as a step-by-
step agile implementing roadmap also considering agile driven project
documentation required.

Chapter 5 and Chapter 6 describes agile implementation effectiveness
assessment methods, analyzes direct and indirect implementation
process metrics as well as the technique implementation success
criteria in different companies’ practice, and provides key agile project’s
KPIs.

Chapter 7 is dedicated to the agile transformation challenges and
explanation what agile coaching is, describing Agile coaching levels and
tools as well as how coaching can help you with transformation.

The narrative is filled with living examples of companies
implementing transformation in the IT sphere. Thanks to organizations’
practice, we deliver experience that can be useful for you along this
difficult path. New management practices introduction in an
organization is a way that requires changes not only in actions but also
in attitude. We hope you will follow this path with us.

CHAPTER 1. WHAT IS THE AGILE
METHODOLOGY?

In 2021, the Agile Manifesto celebrated its 20th anniversary. The
approach originated as a revolt of developers against clumsy IT
corporations.

Let's figure out what Agile is, learn something from its history, and
what is its difference from other software development approaches. We
will also dive into some of the Agile frameworks, find out which option

is most suitable for you, and what Agile coaching is, so this knowledge
will allow you to apply it in your team or company.

The material may be useful and informative for wide range of
specialists dealing with software development: front-end and back-end
developers, DevOps specialists and software architects as well as for
team leaders, project managers, product owners, CTO’s, CPO’s etc.

To begin with, let’s recall some facts. In 1970, Dr. Winston Royce
issued the document that defined Waterfall1. Probably it was already
being done by others at that time, but it is considered now to be
definitive. He marked 5 principles that must be added to reduce most of
the risks of doing waterfall:

• program design comes first;
• document the design;
• do it twice;
• plan, control, and monitor testing;
• involve the customer.

Dr. Royce’s last lines about waterfall were:
“[This] summarizes the five steps that I feel necessary to transform a

risky development process into one that will provide the desired
product. I would emphasize that each item costs some additional sum
of money. If the relatively simpler process without the five complexities
described here would work successfully, then of course the additional

money is not well spent. In my experience, the simpler method has
never worked on large software development efforts and the costs to
recover far exceeded those required to finance the five-step process
listed.”

In other words, Dr. Royce suggested writing a lot of documentation,
handling risks, repeating some stages several times. The result was a
heavy, in contemporary opinion, waterfall model. In an ideal world, we

would go through all levels of this system from top to bottom, like a
waterfall flows, and in the end we would have a good system.

The waterfall development model quickly gained popularity in the
West, and the vast majority of software development teams applied it
some time ago.

Currently, Royce's name is strongly associated with the cascade
methodology, while few recall that he criticized this approach, pointing
out that the software development process should not resemble the
conveyor line operation. IInstead of waiting for all the steps (phases) to
be completed, Royce suggested using a phase-based approach with a
short completion cycle of 1-2 weeks. Its essence is that initially all the
requirements necessary for the project are collected, then divided into
sub-projects, the target architecture is developed, the design is created,
code is written in short iterations etc. The waterfall model may have

concretized and formalized the development methods existed, but it
was not without its drawbacks.

Due to traditional cascade methodology imperfection, clumsiness and
heaviness developers at that time already experimented with so called
“iterative-incremental” approach2, which gave them increased
development flexibility based on regular feedback from customers and
users.

The main idea of this method is to develop the system iteratively
using repetitive cycles at smaller time periods (incrementally), allowing
software developers to take the advantage of what was learned during
the earlier parts or versions of the system development. Learning occurs
both in the development and use of the system, where possible key
process steps begin with the simple implementation of a subset of
software requirements and iteratively improve the evolving versions
until the full system is implemented. At each iteration, design changes
and new features are added.

Experiments continued in the 70s, and in the 80s of the 20th century,
laying the groundwork for what would become the Agile methodology.
By the beginning of the 90s the iterative-incremental approach was
world-famous and studied.

Now it is clear that for the Agile appearance at that time only the
human dimension inquiring strive to understand human traits and how
to incorporate that understanding into management planning and
actions was missing, exactly teamwork and stake on people and their
interaction. By the beginning of the 90s, two key aspects were trained
and tested, which will form the basis of Agile: iterative-incremental
approach and team work, when the project is executed by a group of
people interacting with each other as efficiently as possible, which also
allows to implement projects of any scale.

The 80-90s were marked by personal computers (Apple Macintosh,
PC-based and others) mass distribution. Millions of new computers
emerged in ordinary people and office workers use leading to the fact
that the software development market began to focus on mass demand,
where it was necessary to solve not engineering, but user and business
tasks.

For example, one of these tasks is to create a text editor. Before MS
Word began to dominate, a lot of trial and error was done, a lot of
processors and text editors appeared, many of which only few people
remember now: WordStar, WordPerfect, Lexicon, XyWriter, Lotus notes,
Makurita and others. This kind of product development has to be
conducted with a constant attention to user's reaction, quickly
responding to his needs with new versions.

Approaches to development based on the cascade model, with clear
sequential stages, and comprehensive documentation have received the
conditional name of "heavy methods" (heavy methodologies)3. At the
same time, various specialists from the IT world attempted to work
differently, inventing new tools, techniques, or even developing whole
methodologies in order to increase software adaptability and
development speed as well as deliver valuable product to the user
faster.

These new approaches used a similar set of principles and tools:
• iterative-incremental development;
• regular customer or user feedback;
• teamwork;
• maximum transparency.

Several so-called "lightweight" methods (lightweight
methodologies)4 emerged in the 90s of the 20th century: Crystal Clear,
Extreme programming (XP), Rapid application development (RAD) and
Dynamic System Development method (DSDM), ICONIX, Scrum5,
Adaptive Software Development (ASD), Function-driven Development
(FDD).

Jim Highsmith, author of the book "Adaptive Software Development"
recalled that time: “I think that at that moment we were all looking for
legitimacy. Each of us could worked alone and did similar things in own
way, but it could not have success and recognition in the community [of
software developers].”

Classical "heavy-methods" were often officially fixed as standards for
large-scale software development projects (for example, in the US
Department of Defense). "Lightweight methods" have long been
perceived as exotic, or specific ways of working in a specific company

on a specific project. They did not receive wide recognition, and were
promoted only by their founders’ efforts.

Many people came up with the idea that it was necessary to organize
a general meeting at which various "lightweight" methodologies
founders and supporters would form a common document proclaiming
a new software development paradigm. Then they could act as a united
front, as an organized force, as opposed to "heavy-methods" dominance.

In early 2001, 17 people gathered not far from Wasatch Mountains in
Snowbird, Utah, to discuss the future of software development. The
participants of this group were united by concern about the current
state of affairs in the industry, when “heavy-methodology” driven
projects increasingly failed and flexible approaches were in great
demand of legitimization and recognition. At the same time, they were
not afraid that their thoughts about optimal solution differed.

The long weekend meeting resulted in Agile Manifesto of Software
Development and became an answer to all these questions. This concise
and expressive document consisted of only 68 words and changed
software development forever. For almost two decades since its
creation, these words (and the 12 principles that followed) have been
adopted (to one degree or another) by a huge number of people, teams
and companies.

Agile emerged as a mindset, a thought process that involves
understanding, collaborating, learning, and staying flexible to achieve
high-performing results, as a counterbalance to outdated approaches
and excessive bureaucracy in IT field. Silicon Valley Residents realized
that it is impossible to create innovative products in a conservative
environment.

Here are Agile values with more detailed explanation.
There are four of them:
• if you want to build an agile process, you need to interact and

communicate with each other. You can (and definitely will) use some
tools, for example, trackers – JIRA, Redmine, etc. But the whole process
should be based on various meetings and interaction, and not on
tracker’s settings or TFS (Microsoft stack);

• the working product that we make is much more important than
the documentation for it. An example was given above with two
companies. Documentation, the user cannot apply because the product
is not ready, does not bring value to this user. If we learn to work
minimizing software development steps, or by making them smaller,
then we will have a more flexible process;

• cooperation and interaction with the customer is more important
than strict contract following. It is usually named Fixed Price when you
sign an agreement and fulfill agreed amount of work. The time, amount
of work and deadlines are fixed. This approach is not very good if you
want to work for the long term and be flexible. To be agile, it is more
correct to build partnerships with the customer. The most important
thing is that the search for a partnership and a win-win situation begins
here, when both the customer and his contractor win;

• readiness for changes with following the original plan. Agile
development approach requires plan, estimates and forecasts. If you
have an initial annual project plan and provide some working product
version in some months or requirements change while developing you
can change the whole plan taking changes and feedback into
consideration.

12 Agile development principles, also the result of the Snowbird
meeting, expand these several value-defining proposals.

It's all. Since then, the website with the Agile Manifesto has hardly
changed (or maybe it hasn't changed at all), which can't be said about
the world around Agile.

Agile methodologies have enjoyed overwhelming popularity: first
mentioned in the PMBOK (the US Project Management Body of
Knowledge standard) 5th edition (2013), then they were fully adopted
in the PMBOK version 7, released in 2021 which took all the Agile
principles and became its direct ambassador.

To conclude with Agile introduction, it is necessary to state the main
goal of this approach – delivering value to the consumer. According to
Agile methodology, it is achieved using three characteristics for a
software product:

Thus, the Agile method is applied to:
• accelerate the product launch to the market. If you want to develop

software faster, you need to apply Agile. For example, two similar
business companies. The first one creates the technical task for software
development, designs the structure and interface consistently, this is a
waterfall model, implementing it can take several months. Another

team can already release a website and software applying Agile, start
earning money and hijack the market;

• manage priority changes. An unpleasant challenge for almost all
companies. Your requirements will definitely change if you are doing
the project that lasts at least a few months.What about commercial
development, the problem is that programmers, analysts and designers
never know what customer who pays us and users need. The usual
approach is: until the user tries the site or application, you do not know
whether it is needed or not;

• improve cooperation between IT and business. This is a headache,
especially for large companies. Business requirements change from time
to time, everyone speaks their own language. As a result, the parties do
not understand each other.

Before diving into Agile, it is important to learn terminology in order
to lay the foundation for our understanding of this approach. We will
analyze all the terms in more detail during the dive, so do not be afraid
that at the very beginning they will seem abstract and difficult to
understand:

The very idea of Agile is to learn how to work with the unknown and
fill blank pages of our work due to an iterative approach (working on
short sprints6 of 1-2 weeks).

This helps not only to keep up with the industry, but also to meet
customer expectations and remain competitive.

Implementing Agile while building a software development process
we start revealing practices:

• first of all Stand-Ups (Daily Stand-Ups)7. This is an easy practice:
your team should meet regularly to synchronize the development
process. Communication is key to developing effective teamwork, and
poor communication can be one of the biggest reasons why a project
fails in Agile teams. A daily stand up is a part of the agile methodology
because it helps with improving communication among team members.
Integrating effective communication with face-to-face contact as a part
of the team’s culture helps in creating a more Agile workplace;

• the second is Sprint Planning8. Your team should plan the work for
the nearest iteration. It is an iterative approach, allowing teams to
accelerate the delivery of value to customers and avoid unnecessary
headaches. Instead of releasing the entire product as a whole, the agile
team performs the work within small but convenient increments.
Requirements, plans and results are constantly being checked for
relevance, so that teams can quickly respond to changes;

• unit-testing9. This is a software testing method by which individual
units of source code (sets of one or more computer program modules
together with associated control data, usage procedures, and operating
procedures) are tested to determine whether they are fit for use. Unit

tests are typically automated tests written and run by software
developers to ensure that a Chapter of an application or a program
(known as the "unit") meets its design and behaves as intended. This is
one of the simplest engineering practices that you can start using
quickly. About 60-70% of bugs can be caught by unit testing;

• Release Planning10. We plan it in large parts: what and when we
will release. Agile release planning is a product management method
where you plan incremental releases of a product. It differs from
raditional software planning where you focus on major releases. Using a
release plan helps you plan which product increments (versions) get
released to the market and when. And it’s an integral part of the Agile
SDLC (Software Development Life Cycle) because it can also give higher-
ups peace of mind that there’s a structure and plan beyond just the next
sprint, and helps the individual Agile teams stay on track. What about
Scrum, we can measure it with sprints (sprint planning).

It’s no secret that change is hard and can be difficult to be taken,
especially with complex projects. Making even slight changes to
existing systems can often feel laborious and not worth the effort.
Studies show (Identifying the Reasons for Software Project Failure and
Some of their Proposed Remedial through BRIDGE Process Models.
INTERNATIONAL JOURNAL OF COMPUTER SCIENCES AND
ENGINEERING. January, 2015, 3(1):118-126) that 60-80% of project
failures can be caused by poor requirements gathering, analysis, and
change management. The agile mindset is the best approach to variable
and challenging environment as it offers an opportunity to embrace
change, rather than continuously avoid it. It isn’t something that teams
achieve, but rather something that is continuously cultivated.
Developing teams should strive to optimize, solve problems, reflect,
and continuously improve in the process.

Both Agile principles and values contain a very correct message, but
they look quite abstract from the first sight. Agile methodology

practices add to understanding of this approach. In order to investigate
how Agile works, let's turn to the diagram and take a detailed look at
the meaning of each link in Agile software development process:

LET'S SUMMARIZE WHAT WE’VE LEARNED IN THIS CHAPTER:
in brief, flexible methodology emergence was as natural as IT

industry development. Deviation from out of time methods and
software development flexibility request were influenced by huge
expansion of the IT market and the subsequent demand for faster value
to the consumer delivery.

Besides, now we know:
• Agile methodology started from 4 values which were followed by

12 principles;
• An iterative method of software development is in the base of agile

approach;
• It gives developers an opportunity to deliver value to the consumer

faster.

CHAPTER 2. WHAT ARE THE OTHER
METHODOLOGIES? LET'S COMPARE

WATERFALL AND AGILE
Let's see what approaches also exist in the world of software

development besides the agile approach. First of all, this is the
previously mentioned cascade methodology, also called "waterfall". We
have already learned that in 1970 Dr. Winston Royce defined Waterfall
methodology and suggested its basic principles:

• Program design comes first. Program designers work on the design
of the system, not developers. Designers allocate e data processing
models: database scheme, resources, some kind of non-functional
requirements, interface, etc. Then an overview document must be
prepared. The document should be understandable, informative, and
current. Each team member must have an understanding of the system,
and at least one person must have a deep understanding.

• Document the design. Some (in fact most) developers may wonder
how much documentation is needed. Royce gives a simple answer:
“Quite a lot”. Moreover, he says: “If the documentation is in serious
default, my first recommendation is simple. Replace the project
management. Stop all activities not related to documentation. Bring the
documentation up to acceptable standards.”

Why documentation is important? Royce gives some points:
• documentation is a way of effective communication;
• during the early phase, the documentation is the specification and

is the design;
• during the testing phase, the documentation can be considered as

acceptance criteria;
• the documentation help newcomers to understand the system

better.

• Do it twice. If your system is original, you want to verify your ideas
or concept. Royce recommends creating some kind of MVP (Minimum
Viable Product)11 of your product to check the ideas. Then, the second
version of your product will be finally delivered. The first version may
not be provided to final customers/users, but stakeholders12 want to
see a prototype of the product. It may lead to requirement changes, and
it is an effective way of the development process. The final version of
the product will be closer to market needs.

• Plan, control, and monitor testing. Testing is one of the most
important phases of the SDLC (Software Development Life Cycle)13. You
check your ideas and concepts, verify implemented system comparing it
with system design. Royce recommends inviting the other persons to
verify your system. He says that it would be more effective to give a big
part of the testing to people who did not contribute to the system
during the previous phases. The documentation will help them to test
the system better.

• Involve the customer. Your project customer and stakeholders
should be involved in all phases of the development. They will help to
design and implement a system that will meet their needs closer.
Moreover, the stakeholder may change their opinion about the system
and give new requirements. As a Project Manager you should meet the
changes with pleasure because after all your customer will be satisfied.

Waterfall is based on a logical sequence of steps that must be taken
throughout the software development lifecycle. Each stage is
coordinated by competent employees, documented and passed on.

Although the popularity of the Waterfall model has waned in recent
years, but the nature of the sequential process used in the waterfall
method is intuitively close to developers.

The model proposed by Dr. Royce is extremely simple and clear. It
consists of several blocks, each of them covers its own area of
responsibility.

Let's look closer at the difference between Agile and Waterfall
methodologies.

In management, there is a concept of a project management
triangle14:

It includes the amount of work, time and quality. It is important to
note that the balance in any methodology is created due to a system of
assumptions, so in cascade approach quality can be reduced, and in
Agile the amount of work can easily grow.

The project management triangle clearly displays the so-called triple
limitation problem associated with the need to balance the scope of the
project, its cost and time for implementation without compromising the
quality of the final product. Taking into consideration the concept of
project management triangle, the difference between approaches will
look like this:

In recent years, the waterfall model has been losing its leading
position to more flexible methodologies. This is due to the general
dynamics in IT, when teams of 5-9 people are responsible for software
development, and the deadline can be easily shifted due to the increase
in functionality.

Nevertheless, the cascade model is still relevant for large projects
and organizations:

• It is resistant to personnel changes. Developers can come and go
throughout the life cycle of the project, but thanks to detailed
documentation, this practically does not affect the timing of the
project;

• Waterfall model forces developers involved in the project to be
disciplined and to stay within the plan. If necessary, a management body

responsible for decision-making is added to the general model, while
performers are required to work within the system framework15;

• Flexibility in the early stages. Changes in early phases can be made
immediately and with minimal effort, since they are not backed up by
code. Thus, the customer and the contractor have a significant time
margin for a radical change in the concept of software work;

• Focus on deadlines and finances. Due to the fact that each stage
completely outlines the contour of the future software, all developers
understand their role, the boundaries of work and deadlines. This
allows you to cooperate with the customer knowing the real cost of
development and makes, therefore, the project model attractive.

In the 1970s, Royce's ideas were relevant. But after almost 50 years,
the cascade development method is less and less suitable for IT:

• non-adaptive software structure. At the first stages, the waterfall
model can be flexible, but if problems in the overall structure are
identified during the testing phase, this entails deplorable
consequences in the form of disrupted deadlines and even customer
failures;

• ignores the end user. The lower the process progresses in the
waterfall, the less the role of the customer in it, not to mention the
users he represents. Making any changes to the functionality of the
software starts the entire chain of stages anew, so the products
obtained by the cascade model are far from targeting the mass user;

• later testing. It is here that mistakes made at each of the stages are
most often identified. More flexible methodologies use testing as a
fundamental operation that occurs continuously. Waterfall, on the other
hand, admits low qualifications of employees at each stage and poor
quality of execution, because with late testing, problems cannot be
solved fundamentally, only with the help of "patches".

Let's fix both approaches pros and cons:

Everything seems to be transparent, but in practice the question
often arises which methodology to apply in each specific case. This
scheme helps us mostly to make the right choice:

It turns out that the cascade methodology is an excellent solution in
terms of deadlines and reporting, but very weak in terms of quality.

Despite the fact that these 3 points are increasingly rare in real
practice, the cascade model will be popular and in demand for a long
time because of its clear organization. This means that any professional
developer should understand its basic principles and be ready to exist
within the framework of this approach.

LET'S SUMMARIZE WHAT WE’VE LEARNED IN THIS CHAPTER:
Agile and Waterfall are the most common but opposite to each other

software development approaches. While commending the waterfall
methodology, it is necessary to move forward and look ahead,
addressing contemporary challenges here and now. Agile is just what
you need for this. We have also learned, that:

• software development methodologies should be evaluated using
project management triangle;

• Agile methodology gained great popularity and changed software
development forever by now;

• Waterfall or Cascade methodology is still in demand, so developers
should be ready to exist within this approach.

CHAPTER 3. IMPLEMENTING AGILE
APPROACH IDEAS INTO PRACTICE. LET'S
BREAK DOWN THE INSTRUMENTS AND

TECHNIQUES
Let’s look at frameworks that are used to implement Agile Approach

ideas into real practice, but first let’s explain what a framework is.
Framework is a ready-made set of tools that helps the developer to

create a product quickly: a website, an application, an online store, a
CMS system.

Imagine that you decided to assemble a toy car: it should drive and
look almost like a real one. Obviously, there are several ways to solve
this problem:

• the car can be assembled independently, from scratch: create all the
parts manually or with machining equipment, do electronics and
electrics, paint everything. So you can control the whole process, but it
will take a lot of time;

• a similar car can be assembled from ready-made kits: body parts,
engine, electronics will become modules that are important to choose
and connect correctly. If desired, you can improve any module, but
generally this is not necessary, everything will work right out of the
box.

The framework is the same ready-made set, only for the developer. It
saves the time and effort of a specialist who would have spent on
creating basic things and correcting simple mistakes.

The most common Agile framework is Scrum.

Scrum is a set of rules allowing the team to establish a flexible
workflow. Development is carried out in iterations, the goals of each
iteration and the tasks of each team member are clearly outlined. Due
to Scrum, companies can apply the principles and values of Agile and
work on projects of any complexity. Agile and Scrum concepts are
regularly confused, considering that Agile and Scrum are the same.

The difference lies in the scale of two approaches: Agile is a special
way of thinking, a mindset. Scrum is an instruction for use. A clear plan
describing each step of Agile implementing in product development.
This is a methodology with specific stages, in which roles and events
are clearly defined.

Scrum is based on empiricism and lean thinking.

EMPIRICISM asserts that the source of knowledge is experience, and
decision-making is based on observations. Lean thinking reduces losses
and focuses the main.

Scrum uses an iterative-incremental approach to optimize
predictability and risk

management. It involves groups of people who collectively possess
all the skills and experience to do the job, to share knowledge and
acquire the necessary skills as needed.

Scrum combines four formal events for inspection and adaptation
into a container event – Sprint. These events work well because they
implement the empirical pillars of Scrum: transparency, inspection and
adaptation.

TRANSPARENCY: the emerging process and work should be visible
both to those who do the work and to those who get results. Important
decisions in Scrum are based on an assessment of the state of three
formal artifacts16. Artifacts with low transparency can lead to solutions
that reduce value and increase risk. Transparency makes inspection
possible. Inspection without transparency is misleading and is a waste.

INSPECTION: to identify potentially undesirable deviations and
problems, it is necessary to regularly and thoroughly inspect Scrum
artifacts and progress towards achieving agreed goals. To help with the
inspection, Scrum provides a cadence17 in the form of five events.

Inspection makes adaptation possible. Inspection without adaptation
is considered meaningless. Scrum events are designed to provoke
change.

ADAPTATION: if any aspects of the process go beyond acceptable
limits, or if the final product is unacceptable, the process used or
materials produced must be adjusted. The adjustment should be made
as soon as possible to minimize further deviation. Adaptation becomes
more difficult when people involved do not have authority or are not
self-governing.

A Scrum Team18 is expected to adapt the moment it learns something
new during an inspection.

SCRUM VALUES
The successful use of Scrum depends on how much people share its

five values: commitment, focus, openness, respect and courage.
A Scrum Team is committed to their goals and supporting each other.

Their most important focus in working at Sprint is the maximum
possible progress in achieving goals. The Scrum Team and stakeholders
are open to discussing work and challenges. Scrum Team members
respect each other as professionals and independent people, and in the
same way they are respected by the people they work with. Scrum Team
members have the courage to do the right thing and work on solving
complex problems. These values set the direction for the work, actions
and behavior of the Scrum Team. The decisions taken, the steps taken,
and the way Scrum is used should reinforce these values, not weaken or
undermine them. Scrum Team members comprehend and discover these
values while working with Scrum events and artifacts. When these
values are brought to life by Scrum Team members and the people they
work with, the empirical pillars of Scrum – transparency, inspection and
adaptation – come to life, building trust.

SCRUM ROLES19: TEAM (DEVELOPERS)
The main unit of Scrum is a small team of people, a Scrum Team. A

Scrum Team consists of one Scrum Master20, one Product Owner21 and
Developers. There are no subcommands or hierarchy inside the Scrum
Team. This is a close association of professionals focused on one goal at
any time given – Product Goal.

Scrum Teams are cross-functional22, meaning their members have all
the skills needed to create value in each Sprint. They are also self-
governing, that is, they decide who does what, when and how. A Scrum
Team is small enough to stay agile, and large enough to do significant
work during a Sprint – usually consists of no more than 10 people.
Overall, we found that small teams communicate better and are more
productive. If Scrum Teams become too large, participants should
consider reorganizing into several cohesive Scrum Teams, each focused

the same product. Therefore, they must have the same Product Goal,
the same Product Backlog23, the same Product Owner.

A Scrum Team performs all product activities: cooperation with
stakeholders, verification, maintenance, operation, experiments,
research, development and all that may be required. They are structured
and empowered by the organization to manage their own work.
Working in Sprints at a steady pace improves the focus and consistency
of the Scrum Team.

The whole Scrum Team is responsible for valuable and useful
Increment creation in every Sprint. Scrum defines three responsibility
zones in the Scrum Team: Developers, Product Owner and Scrum
Master.

Developers are the people in the Scrum Team who are committed to
creating any aspect of a ready-to-use Increment in every Sprint. The
specific skills needed by Developers depend on the subject area of the
work being done and can be very different. However, Developers are
always responsible for:

• creating a plan for Sprint - Sprint Backlog24;
• striving for quality through compliance with the Definition of

readiness (Definition of Done)25;
• daily adaptation of your plan to achieve the Sprint Goal;
• mutual accountability to each other as professionals.

SCRUM ROLES: PRODUCT OWNER
A Product Owner is responsible for maximizing the value of the

product resulting from the work of the Scrum Team. The ways to
achieve maximum value can be very different and depend on
organizations, Scrum Teams and specific people. The Product Owner is
also responsible for the effective management of the Product Backlog,
including:

• Product Goal developing and accurate communicating;
• Product Backlog elements creating and explaining;

• Product Backlog elements organizing;
• Product Backlog transparency, accessibility and understanding

providing.

A Product Owner can do this work himself or delegate it to other
persons. However, Product Owner remains responsible for it. In order
for Product Owners to succeed in this, the entire organization must
respect their decisions. These decisions are reflected in the content and
order of the Product Backlog elements, as well as in the Increment
being inspected during the Sprint Review26. A Product Owner is one
person, not a committee. The Product Owner can reflect the needs of
many stakeholders in the Product Backlog. Those who want to change
the Product Backlog can do this by trying to convince the Product
Owner.

SCRUM ROLES: SCRUM MASTER
A Scrum Master is responsible for applying Scrum in accordance with

Scrum Guidelines. They do this by helping everyone understand Scrum
theory and practices, both within the Scrum Team and organization. The
Scrum Master is responsible for Scrum Team effectiveness, helping the
Scrum Team improve their working methods within the Scrum
framework. Scrum Masters are true leaders who serve the Scrum Team
and entire organization.

A Scrum Master serves the Scrum Team in several ways, including:

• advising team members on self-management and cross-
functionality;

• helping the Scrum Team focus on creating Increments with high
value that meet the Definition of readiness;

• helping to eliminate obstacles that hinder the progress of the
Scrum Team;

• making sure that all Scrum events occur, are positive, productive
and do not go beyond the time limits.

A Scrum Master serves the Product Owner in several ways, including:
• helping to find techniques for effective Product Goal detection and

Product Backlog management;
• helping the Scrum Team realize the need for clear and concise

Product Backlog elements;
• helping to apply empirical product planning in a complex

environment;
• facilitating interaction with stakeholders upon request or if

necessary.
A Scrum Master serves the organization in several ways, including:
• directing, training and advising the organization in Scrum

application;
• planning the transition to Scrum and advising on Scrum application

within the organization;
• helping employees and stakeholders understand and apply an

empirical approach to complex work;
• removing barriers between stakeholders and Scrum Teams.

SCRUM EVENTS

Sprint is a container for all other events. Every event in Scrum is a
formal opportunity for inspection and adaptation of Scrum artifacts.
These events are specially designed to provide the necessary
transparency. Failure to conduct any of the Scrum events in accordance
with the description leads to a loss of opportunities for inspection and
adaptation. Events are used in Scrum to create regularity and minimize
the need for meetings not defined in Scrum. A good practice of
reducing complexity is to hold all events at the same time, in the same
place.

SPRINT

Sprints are the pulse of Scrum, where ideas turn into value. This
event has a fixed duration of no more than one month to ensure
consistency. A new Sprint starts immediately after the completion of the

previous one. All the work needed to achieve the Product Goal,
including Sprint Planning, Daily Scrum27, Sprint Review and Sprint
Retrospective28 events, is done within Sprints.

Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию

на Литрес.
Безопасно оплатить книгу можно банковской картой Visa,

MasterCard, Maestro, со счета мобильного телефона, с платежного
терминала, в салоне МТС или Связной, через PayPal, WebMoney,
Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим
удобным Вам способом.

https://www.litres.ru/chitat-onlayn/?art=69961321&lfrom=923072272&ffile=1

Примечания

1
Waterfall methodology, also called cascade or waterfall, is a classic

model of the software development lifecycle.
Вернуться

2
Combination of both iterative and incremental software development

methods when the development progress is achieved by short time
periods (iterations), each of them delivering an increment to the
product development process.

Вернуться

3
Approaches to software development based on the cascade model,

with clear sequential stages, and comprehensive documentation.
Вернуться

4
Approaches to software development based on the iterative

incremental method.
Вернуться

5

The most common and popular Agile framework.
Вернуться

6
A short time period during which a scrum team performs a given

amount of work.
Вернуться

7
A short meeting from 5 to 20 minutes a day, at which team members

tell share what is happening in their work tasks.
Вернуться

8
The meeting that starts each sprint, and is intended to determine the

team's work plan throughout the sprint.
Вернуться

9
This is a software testing method by which individual units of source

code are tested to determine whether they are fit for use.
Вернуться

10
This is a product management method in which you develop a

strategy for its phased release.
Вернуться

11
The product or service test version with a minimal set of functions

(sometimes even one) that delivers value to the end user.
Вернуться

12
A person or an organization that has rights, interests, requirements or

interests regarding the system or its properties that meet their needs
and expectations.

Вернуться

13
The information systems creating concept, including their planning,

development, testing and deployment.
Вернуться

14
This is a model, illustrating the three constraints interdependence:

time, money and scale, as well as how changing one factor requires
changing others.

Вернуться

15
A ready-made set of tools that helps a developer to quickly create a

product: a website, an application, an online store etc.
Вернуться

16
This is the information with which the Scrum team and stakeholders

describe in detail the product being developed, as well as the actions to
create it and the activities within the project.

Вернуться

17
An Agile cadence is a reliable series of events and activities that occur

on a regular, predictable schedule.
Вернуться

18
This is a small group of people, within which there is no hierarchy,

mini-teams or leader and all participants work on the same goal.
Вернуться

19
A Scrum team participants’ roles.
Вернуться

20
A Scrum role which does not imply anything other than the correct

Scrum process conduction. Thus, the Scrum master is the server-leader
of the team.

A Scrum role, a person responsible for the product creation and
management. (S)he monitors its development process, records the

necessary

metrics and is responsible for the result.
Вернуться

21
A Scrum role, a person responsible for the product creation and

management. (S)he monitors its development process, records the
necessary metrics and is responsible for the result.

Вернуться

22
A team that has all the skills necessary to do the job and is

independent on those who are not part of the team. Cross-functional
Teams are more flexible, creative and productive than teams where
people are specialized in one competence to do their job.

Вернуться

23
An ordered set of elements, a queue of tasks, a list of all the

functions that you want to get from the product. This list contains brief
descriptions of all the product features desired.

Вернуться

24
A list of specific tasks to implement the product backlog selected

elements.
Вернуться

25

This is a list of process and increment conditions under which the
backlog item can be considered done.

Вернуться

26
The meeting at the end of each sprint intended to present the

product developed by the team during the sprint.
Вернуться

27
This is a Scrum meeting, one of 5 Scrum events, that lasts no longer

than fifteen minutes and is held every working day in the same place at
the same time.

Вернуться

28
This is a workshop which is held to discuss how to improve the

workflow.
Вернуться

	Алиса Бобовникова. Agile Transformation in IT-organizations
	INTRODUCTION

	CHAPTER 1. WHAT IS THE AGILE METHODOLOGY?
	CHAPTER 2. WHAT ARE THE OTHER METHODOLOGIES? LET'S COMPARE WATERFALL AND AGILE
	CHAPTER 3. IMPLEMENTING AGILE APPROACH IDEAS INTO PRACTICE. LET'S BREAK DOWN THE INSTRUMENTS AND TECHNIQUES
	Конец ознакомительного фрагмента
	Примечания

